Commit 3167e956 authored by Bruno Martins's avatar Bruno Martins Committed by Kevin F. Haggerty
Browse files

sm6150-common: Drop prebuilt WiFi blobs

Change-Id: I7b92eaea2cf2f059c8214916ea186dc6c1e03917
parent 35d6fdf2
<?xml version="1.0" encoding="UTF-8"?>
<!--
/*
* Copyright (c) 2019, Qualcomm Technologies, Inc.
* All Rights Reserved.
* Confidential and Proprietary - Qualcomm Technologies, Inc.
*/
-->
<CapabilityStore version="1">
<namespace name="wigig">
<capability key="max_num_sta" value="8" />
<capability key="npt.rps" value="206"/>
<capability key="npt.gro_flush_timeout" value="2000"/>
<capability key="npt.tcp_limit_output_bytes" value="8800000"/>
<capability key="fst.data.interface" value="bond0"/>
<capability key="fst.wigig.interface" value="wigig0"/>
<capability key="fst.wifi.sta.interface" value="wlan0"/>
<capability key="fst.wifi.sap.interface" value="softap0"/>
<capability key="fst.wigig.interface.channel" value="2"/>
<capability key="sta.wowlan_triggers" value="any" />
<capability key="sap.wowlan_triggers" value="any" />
</namespace>
</CapabilityStore>
# List of MAC addresses that are allowed to authenticate (IEEE 802.11)
# with the AP. Optional VLAN ID can be assigned for clients based on the
# MAC address if dynamic VLANs (hostapd.conf dynamic_vlan option) are used.
# List of MAC addresses that are not allowed to authenticate (IEEE 802.11)
# with the AP.
##### hostapd configuration file ##############################################
# Empty lines and lines starting with # are ignored
# AP netdevice name (without 'ap' postfix, i.e., wlan0 uses wlan0ap for
# management frames with the Host AP driver); wlan0 with many nl80211 drivers
# Note: This attribute can be overridden by the values supplied with the '-i'
# command line parameter.
interface=wlan0
# In case of atheros and nl80211 driver interfaces, an additional
# configuration parameter, bridge, may be used to notify hostapd if the
# interface is included in a bridge. This parameter is not used with Host AP
# driver. If the bridge parameter is not set, the drivers will automatically
# figure out the bridge interface (assuming sysfs is enabled and mounted to
# /sys) and this parameter may not be needed.
#
# For nl80211, this parameter can be used to request the AP interface to be
# added to the bridge automatically (brctl may refuse to do this before hostapd
# has been started to change the interface mode). If needed, the bridge
# interface is also created.
#bridge=br0
# Driver interface type (hostap/wired/none/nl80211/bsd);
# default: hostap). nl80211 is used with all Linux mac80211 drivers.
# Use driver=none if building hostapd as a standalone RADIUS server that does
# not control any wireless/wired driver.
driver=nl80211
# Driver interface parameters (mainly for development testing use)
# driver_params=<params>
# hostapd event logger configuration
#
# Two output method: syslog and stdout (only usable if not forking to
# background).
#
# Module bitfield (ORed bitfield of modules that will be logged; -1 = all
# modules):
# bit 0 (1) = IEEE 802.11
# bit 1 (2) = IEEE 802.1X
# bit 2 (4) = RADIUS
# bit 3 (8) = WPA
# bit 4 (16) = driver interface
# bit 5 (32) = IAPP
# bit 6 (64) = MLME
#
# Levels (minimum value for logged events):
# 0 = verbose debugging
# 1 = debugging
# 2 = informational messages
# 3 = notification
# 4 = warning
#
logger_syslog=-1
logger_syslog_level=2
logger_stdout=-1
logger_stdout_level=2
# Dump file for state information (on SIGUSR1)
dump_file=/tmp/hostapd.dump
# Interface for separate control program. If this is specified, hostapd
# will create this directory and a UNIX domain socket for listening to requests
# from external programs (CLI/GUI, etc.) for status information and
# configuration. The socket file will be named based on the interface name, so
# multiple hostapd processes/interfaces can be run at the same time if more
# than one interface is used.
# /var/run/hostapd is the recommended directory for sockets and by default,
# hostapd_cli will use it when trying to connect with hostapd.
ctrl_interface=/data/vendor/wifi/hostapd/ctrl
# Access control for the control interface can be configured by setting the
# directory to allow only members of a group to use sockets. This way, it is
# possible to run hostapd as root (since it needs to change network
# configuration and open raw sockets) and still allow GUI/CLI components to be
# run as non-root users. However, since the control interface can be used to
# change the network configuration, this access needs to be protected in many
# cases. By default, hostapd is configured to use gid 0 (root). If you
# want to allow non-root users to use the contron interface, add a new group
# and change this value to match with that group. Add users that should have
# control interface access to this group.
#
# This variable can be a group name or gid.
#ctrl_interface_group=wheel
#ctrl_interface_group=0
##### IEEE 802.11 related configuration #######################################
# SSID to be used in IEEE 802.11 management frames
ssid=QualcommSoftAP
# Alternative formats for configuring SSID
# (double quoted string, hexdump, printf-escaped string)
#ssid2="test"
#ssid2=74657374
#ssid2=P"hello\nthere"
# UTF-8 SSID: Whether the SSID is to be interpreted using UTF-8 encoding
#utf8_ssid=1
# Country code (ISO/IEC 3166-1). Used to set regulatory domain.
# Set as needed to indicate country in which device is operating.
# This can limit available channels and transmit power.
# These two octets are used as the first two octets of the Country String
# (dot11CountryString)
#country_code=US
# The third octet of the Country String (dot11CountryString)
# This parameter is used to set the third octet of the country string.
#
# All environments of the current frequency band and country (default)
#country3=0x20
# Outdoor environment only
#country3=0x4f
# Indoor environment only
#country3=0x49
# Noncountry entity (country_code=XX)
#country3=0x58
# IEEE 802.11 standard Annex E table indication: 0x01 .. 0x1f
# Annex E, Table E-4 (Global operating classes)
#country3=0x04
# Enable IEEE 802.11d. This advertises the country_code and the set of allowed
# channels and transmit power levels based on the regulatory limits. The
# country_code setting must be configured with the correct country for
# IEEE 802.11d functions.
# (default: 0 = disabled)
#ieee80211d=1
# Enable IEEE 802.11h. This enables radar detection and DFS support if
# available. DFS support is required on outdoor 5 GHz channels in most countries
# of the world. This can be used only with ieee80211d=1.
# (default: 0 = disabled)
#ieee80211h=1
# Add Power Constraint element to Beacon and Probe Response frames
# This config option adds Power Constraint element when applicable and Country
# element is added. Power Constraint element is required by Transmit Power
# Control. This can be used only with ieee80211d=1.
# Valid values are 0..255.
#local_pwr_constraint=3
# Set Spectrum Management subfield in the Capability Information field.
# This config option forces the Spectrum Management bit to be set. When this
# option is not set, the value of the Spectrum Management bit depends on whether
# DFS or TPC is required by regulatory authorities. This can be used only with
# ieee80211d=1 and local_pwr_constraint configured.
#spectrum_mgmt_required=1
# Operation mode (a = IEEE 802.11a (5 GHz), b = IEEE 802.11b (2.4 GHz),
# g = IEEE 802.11g (2.4 GHz), ad = IEEE 802.11ad (60 GHz); a/g options are used
# with IEEE 802.11n (HT), too, to specify band). For IEEE 802.11ac (VHT), this
# needs to be set to hw_mode=a. When using ACS (see channel parameter), a
# special value "any" can be used to indicate that any support band can be used.
# This special case is currently supported only with drivers with which
# offloaded ACS is used.
# Default: IEEE 802.11b
hw_mode=g
# Channel number (IEEE 802.11)
# (default: 0, i.e., not set)
# Please note that some drivers do not use this value from hostapd and the
# channel will need to be configured separately with iwconfig.
#
# If CONFIG_ACS build option is enabled, the channel can be selected
# automatically at run time by setting channel=acs_survey or channel=0, both of
# which will enable the ACS survey based algorithm.
channel=0
# ACS tuning - Automatic Channel Selection
# See: http://wireless.kernel.org/en/users/Documentation/acs
#
# You can customize the ACS survey algorithm with following variables:
#
# acs_num_scans requirement is 1..100 - number of scans to be performed that
# are used to trigger survey data gathering of an underlying device driver.
# Scans are passive and typically take a little over 100ms (depending on the
# driver) on each available channel for given hw_mode. Increasing this value
# means sacrificing startup time and gathering more data wrt channel
# interference that may help choosing a better channel. This can also help fine
# tune the ACS scan time in case a driver has different scan dwell times.
#
# acs_chan_bias is a space-separated list of <channel>:<bias> pairs. It can be
# used to increase (or decrease) the likelihood of a specific channel to be
# selected by the ACS algorithm. The total interference factor for each channel
# gets multiplied by the specified bias value before finding the channel with
# the lowest value. In other words, values between 0.0 and 1.0 can be used to
# make a channel more likely to be picked while values larger than 1.0 make the
# specified channel less likely to be picked. This can be used, e.g., to prefer
# the commonly used 2.4 GHz band channels 1, 6, and 11 (which is the default
# behavior on 2.4 GHz band if no acs_chan_bias parameter is specified).
#
# Defaults:
#acs_num_scans=5
#acs_chan_bias=1:0.8 6:0.8 11:0.8
# Channel list restriction. This option allows hostapd to select one of the
# provided channels when a channel should be automatically selected.
# Channel list can be provided as range using hyphen ('-') or individual
# channels can be specified by space (' ') separated values
# Default: all channels allowed in selected hw_mode
#chanlist=100 104 108 112 116
chanlist=1-13 36-165
# Exclude DFS channels from ACS
# This option can be used to exclude all DFS channels from the ACS channel list
# in cases where the driver supports DFS channels.
acs_exclude_dfs=1
# Beacon interval in kus (1.024 ms) (default: 100; range 15..65535)
beacon_int=100
# DTIM (delivery traffic information message) period (range 1..255):
# number of beacons between DTIMs (1 = every beacon includes DTIM element)
# (default: 2)
dtim_period=2
# Maximum number of stations allowed in station table. New stations will be
# rejected after the station table is full. IEEE 802.11 has a limit of 2007
# different association IDs, so this number should not be larger than that.
# (default: 2007)
max_num_sta=255
# RTS/CTS threshold; -1 = disabled (default); range -1..65535
# If this field is not included in hostapd.conf, hostapd will not control
# RTS threshold and 'iwconfig wlan# rts <val>' can be used to set it.
#rts_threshold=2347
# Fragmentation threshold; -1 = disabled (default); range -1, 256..2346
# If this field is not included in hostapd.conf, hostapd will not control
# fragmentation threshold and 'iwconfig wlan# frag <val>' can be used to set
# it.
#fragm_threshold=2346
# Rate configuration
# Default is to enable all rates supported by the hardware. This configuration
# item allows this list be filtered so that only the listed rates will be left
# in the list. If the list is empty, all rates are used. This list can have
# entries that are not in the list of rates the hardware supports (such entries
# are ignored). The entries in this list are in 100 kbps, i.e., 11 Mbps = 110.
# If this item is present, at least one rate have to be matching with the rates
# hardware supports.
# default: use the most common supported rate setting for the selected
# hw_mode (i.e., this line can be removed from configuration file in most
# cases)
#supported_rates=10 20 55 110 60 90 120 180 240 360 480 540
# Basic rate set configuration
# List of rates (in 100 kbps) that are included in the basic rate set.
# If this item is not included, usually reasonable default set is used.
#basic_rates=10 20
#basic_rates=10 20 55 110
#basic_rates=60 120 240
# Beacon frame TX rate configuration
# This sets the TX rate that is used to transmit Beacon frames. If this item is
# not included, the driver default rate (likely lowest rate) is used.
# Legacy (CCK/OFDM rates):
# beacon_rate=<legacy rate in 100 kbps>
# HT:
# beacon_rate=ht:<HT MCS>
# VHT:
# beacon_rate=vht:<VHT MCS>
#
# For example, beacon_rate=10 for 1 Mbps or beacon_rate=60 for 6 Mbps (OFDM).
#beacon_rate=10
# Short Preamble
# This parameter can be used to enable optional use of short preamble for
# frames sent at 2 Mbps, 5.5 Mbps, and 11 Mbps to improve network performance.
# This applies only to IEEE 802.11b-compatible networks and this should only be
# enabled if the local hardware supports use of short preamble. If any of the
# associated STAs do not support short preamble, use of short preamble will be
# disabled (and enabled when such STAs disassociate) dynamically.
# 0 = do not allow use of short preamble (default)
# 1 = allow use of short preamble
#preamble=1
# Station MAC address -based authentication
# Please note that this kind of access control requires a driver that uses
# hostapd to take care of management frame processing and as such, this can be
# used with driver=hostap or driver=nl80211, but not with driver=atheros.
# 0 = accept unless in deny list
# 1 = deny unless in accept list
# 2 = use external RADIUS server (accept/deny lists are searched first)
macaddr_acl=0
# Accept/deny lists are read from separate files (containing list of
# MAC addresses, one per line). Use absolute path name to make sure that the
# files can be read on SIGHUP configuration reloads.
accept_mac_file=/data/hostapd/hostapd.accept
deny_mac_file=/data/hostapd/hostapd.deny
# IEEE 802.11 specifies two authentication algorithms. hostapd can be
# configured to allow both of these or only one. Open system authentication
# should be used with IEEE 802.1X.
# Bit fields of allowed authentication algorithms:
# bit 0 = Open System Authentication
# bit 1 = Shared Key Authentication (requires WEP)
auth_algs=3
# Send empty SSID in beacons and ignore probe request frames that do not
# specify full SSID, i.e., require stations to know SSID.
# default: disabled (0)
# 1 = send empty (length=0) SSID in beacon and ignore probe request for
# broadcast SSID
# 2 = clear SSID (ASCII 0), but keep the original length (this may be required
# with some clients that do not support empty SSID) and ignore probe
# requests for broadcast SSID
ignore_broadcast_ssid=0
# Do not reply to broadcast Probe Request frames from unassociated STA if there
# is no room for additional stations (max_num_sta). This can be used to
# discourage a STA from trying to associate with this AP if the association
# would be rejected due to maximum STA limit.
# Default: 0 (disabled)
#no_probe_resp_if_max_sta=0
# Additional vendor specific elements for Beacon and Probe Response frames
# This parameter can be used to add additional vendor specific element(s) into
# the end of the Beacon and Probe Response frames. The format for these
# element(s) is a hexdump of the raw information elements (id+len+payload for
# one or more elements)
#vendor_elements=dd0411223301
# Additional vendor specific elements for (Re)Association Response frames
# This parameter can be used to add additional vendor specific element(s) into
# the end of the (Re)Association Response frames. The format for these
# element(s) is a hexdump of the raw information elements (id+len+payload for
# one or more elements)
#assocresp_elements=dd0411223301
# TX queue parameters (EDCF / bursting)
# default for all these fields: not set, use hardware defaults
# tx_queue_<queue name>_<param>
# queues: data0, data1, data2, data3
# (data0 is the highest priority queue)
# parameters:
# aifs: AIFS (default 2)
# cwmin: cwMin (1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, 8191,
# 16383, 32767)
# cwmax: cwMax (same values as cwMin, cwMax >= cwMin)
# burst: maximum length (in milliseconds with precision of up to 0.1 ms) for
# bursting
#
# Default WMM parameters (IEEE 802.11 draft; 11-03-0504-03-000e):
# These parameters are used by the access point when transmitting frames
# to the clients.
#
# Low priority / AC_BK = background
#tx_queue_data3_aifs=7
#tx_queue_data3_cwmin=15
#tx_queue_data3_cwmax=1023
#tx_queue_data3_burst=0
# Note: for IEEE 802.11b mode: cWmin=31 cWmax=1023 burst=0
#
# Normal priority / AC_BE = best effort
#tx_queue_data2_aifs=3
#tx_queue_data2_cwmin=15
#tx_queue_data2_cwmax=63
#tx_queue_data2_burst=0
# Note: for IEEE 802.11b mode: cWmin=31 cWmax=127 burst=0
#
# High priority / AC_VI = video
#tx_queue_data1_aifs=1
#tx_queue_data1_cwmin=7
#tx_queue_data1_cwmax=15
#tx_queue_data1_burst=3.0
# Note: for IEEE 802.11b mode: cWmin=15 cWmax=31 burst=6.0
#
# Highest priority / AC_VO = voice
#tx_queue_data0_aifs=1
#tx_queue_data0_cwmin=3
#tx_queue_data0_cwmax=7
#tx_queue_data0_burst=1.5
# Note: for IEEE 802.11b mode: cWmin=7 cWmax=15 burst=3.3
#
# Special queues; normally not user configurable
#
#tx_queue_after_beacon_aifs=2
#tx_queue_after_beacon_cwmin=15
#tx_queue_after_beacon_cwmax=1023
#tx_queue_after_beacon_burst=0
#
#tx_queue_beacon_aifs=2
#tx_queue_beacon_cwmin=3
#tx_queue_beacon_cwmax=7
#tx_queue_beacon_burst=1.5
# 802.1D Tag (= UP) to AC mappings
# WMM specifies following mapping of data frames to different ACs. This mapping
# can be configured using Linux QoS/tc and sch_pktpri.o module.
# 802.1D Tag 802.1D Designation Access Category WMM Designation
# 1 BK AC_BK Background
# 2 - AC_BK Background
# 0 BE AC_BE Best Effort
# 3 EE AC_BE Best Effort
# 4 CL AC_VI Video
# 5 VI AC_VI Video
# 6 VO AC_VO Voice
# 7 NC AC_VO Voice
# Data frames with no priority information: AC_BE
# Management frames: AC_VO
# PS-Poll frames: AC_BE
# Default WMM parameters (IEEE 802.11 draft; 11-03-0504-03-000e):
# for 802.11a or 802.11g networks
# These parameters are sent to WMM clients when they associate.
# The parameters will be used by WMM clients for frames transmitted to the
# access point.
#
# note - txop_limit is in units of 32microseconds
# note - acm is admission control mandatory flag. 0 = admission control not
# required, 1 = mandatory
# note - Here cwMin and cmMax are in exponent form. The actual cw value used
# will be (2^n)-1 where n is the value given here. The allowed range for these
# wmm_ac_??_{cwmin,cwmax} is 0..15 with cwmax >= cwmin.
#
wmm_enabled=1
#
# WMM-PS Unscheduled Automatic Power Save Delivery [U-APSD]
# Enable this flag if U-APSD supported outside hostapd (eg., Firmware/driver)
#uapsd_advertisement_enabled=1
#
# Low priority / AC_BK = background
wmm_ac_bk_cwmin=4
wmm_ac_bk_cwmax=10
wmm_ac_bk_aifs=7
wmm_ac_bk_txop_limit=0
wmm_ac_bk_acm=0
# Note: for IEEE 802.11b mode: cWmin=5 cWmax=10
#
# Normal priority / AC_BE = best effort
wmm_ac_be_aifs=3
wmm_ac_be_cwmin=4
wmm_ac_be_cwmax=10
wmm_ac_be_txop_limit=0
wmm_ac_be_acm=0
# Note: for IEEE 802.11b mode: cWmin=5 cWmax=7
#
# High priority / AC_VI = video
wmm_ac_vi_aifs=2
wmm_ac_vi_cwmin=3
wmm_ac_vi_cwmax=4
wmm_ac_vi_txop_limit=94
wmm_ac_vi_acm=0
# Note: for IEEE 802.11b mode: cWmin=4 cWmax=5 txop_limit=188
#
# Highest priority / AC_VO = voice
wmm_ac_vo_aifs=2
wmm_ac_vo_cwmin=2
wmm_ac_vo_cwmax=3
wmm_ac_vo_txop_limit=47
wmm_ac_vo_acm=0
# Note: for IEEE 802.11b mode: cWmin=3 cWmax=4 burst=102
# Static WEP key configuration
#
# The key number to use when transmitting.
# It must be between 0 and 3, and the corresponding key must be set.
# default: not set
#wep_default_key=0
# The WEP keys to use.
# A key may be a quoted string or unquoted hexadecimal digits.
# The key length should be 5, 13, or 16 characters, or 10, 26, or 32
# digits, depending on whether 40-bit (64-bit), 104-bit (128-bit), or
# 128-bit (152-bit) WEP is used.
# Only the default key must be supplied; the others are optional.
# default: not set
#wep_key0=123456789a
#wep_key1="vwxyz"
#wep_key2=0102030405060708090a0b0c0d
#wep_key3=".2.4.6.8.0.23"
# Station inactivity limit
#
# If a station does not send anything in ap_max_inactivity seconds, an
# empty data frame is sent to it in order to verify whether it is
# still in range. If this frame is not ACKed, the station will be
# disassociated and then deauthenticated. This feature is used to
# clear station table of old entries when the STAs move out of the
# range.
#
# The station can associate again with the AP if it is still in range;
# this inactivity poll is just used as a nicer way of verifying
# inactivity; i.e., client will not report broken connection because
# disassociation frame is not sent immediately without first polling
# the STA with a data frame.
# default: 300 (i.e., 5 minutes)
#ap_max_inactivity=300
# Enable/disable internal bridge for packets between associated stations.
#
# The inactivity polling can be disabled to disconnect stations based on
# inactivity timeout so that idle stations are more likely to be disconnected
# even if they are still in range of the AP. This can be done by setting
# skip_inactivity_poll to 1 (default 0).
#skip_inactivity_poll=0
# Disassociate stations based on excessive transmission failures or other
# indications of connection loss. This depends on the driver capabilities and
# may not be available with all drivers.
#disassoc_low_ack=1
# Maximum allowed Listen Interval (how many Beacon periods STAs are allowed to
# remain asleep). Default: 65535 (no limit apart from field size)
#max_listen_interval=100
# WDS (4-address frame) mode with per-station virtual interfaces
# (only supported with driver=nl80211)
# This mode allows associated stations to use 4-address frames to allow layer 2
# bridging to be used.
#wds_sta=1
# If bridge parameter is set, the WDS STA interface will be added to the same
# bridge by default. This can be overridden with the wds_bridge parameter to
# use a separate bridge.
#wds_bridge=wds-br0
# Start the AP with beaconing disabled by default.
#start_disabled=0
# Client isolation can be used to prevent low-level bridging of frames between
# associated stations in the BSS. By default, this bridging is allowed.
#ap_isolate=1
# BSS Load update period (in BUs)
# This field is used to enable and configure adding a BSS Load element into
# Beacon and Probe Response frames.
#bss_load_update_period=50
# Fixed BSS Load value for testing purposes
# This field can be used to configure hostapd to add a fixed BSS Load element
# into Beacon and Probe Response frames for testing purposes. The format is
# <station count>:<channel utilization>:<available admission capacity>
#bss_load_test=12:80:20000
# Multicast to unicast conversion
# Request that the AP will do multicast-to-unicast conversion for ARP, IPv4, and
# IPv6 frames (possibly within 802.1Q). If enabled, such frames are to be sent
# to each station separately, with the DA replaced by their own MAC address
# rather than the group address.
#
# Note that this may break certain expectations of the receiver, such as the
# ability to drop unicast IP packets received within multicast L2 frames, or the
# ability to not send ICMP destination unreachable messages for packets received
# in L2 multicast (which is required, but the receiver can't tell the difference
# if this new option is enabled).
#
# This also doesn't implement the 802.11 DMS (directed multicast service).
#
#multicast_to_unicast=0
# Send broadcast Deauthentication frame on AP start/stop
# Default: 1 (enabled)
#broadcast_deauth=1
##### IEEE 802.11n related configuration ######################################
# ieee80211n: Whether IEEE 802.11n (HT) is enabled
# 0 = disabled (default)
# 1 = enabled
# Note: You will also need to enable WMM for full HT functionality.
# Note: hw_mode=g (2.4 GHz) and hw_mode=a (5 GHz) is used to specify the band.
ieee80211n=1
#require_ht=1
# ht_capab: HT capabilities (list of flags)
# LDPC coding capability: [LDPC] = supported
# Supported channel width set: [HT40-] = both 20 MHz and 40 MHz with secondary
# channel below the primary channel; [HT40+] = both 20 MHz and 40 MHz
# with secondary channel above the primary channel
# (20 MHz only if neither is set)
# Note: There are limits on which channels can be used with HT40- and
# HT40+. Following table shows the channels that may be available for
# HT40- and HT40+ use per IEEE 802.11n Annex J:
# freq HT40- HT40+
# 2.4 GHz 5-13 1-7 (1-9 in Europe/Japan)